

e-ISSN: 2456-4435 April 2020 | Vol. 04th | Issue:2nd

International Journal of Research in Indian Medicine

Role of *Cicer arietinum (Bengal gram)* as a Neutraceutical in *Sthaulya* Bharti Sadabal¹*, D. V. Kulkarni², T. A. Pansare 3

- **1**. PG Scholar (Dravyaguna)
- 2. Professor and Head of Department,
- 3. Associate professor Dept. of Dravyaguna, Government Ayurveda College, Osmanabad, Maharashtra, India

*Corresponding author: email-bhartisadabal15@gmail.com

Abstract

Easy availability of health injurious, processed food, increased capacity of expenditure and bad food habits have caused an outburst in Obesity, resulted in more than 30 million obese patients in India. As obesity causes increased risk of heart diseases, and Diabetes Mellitus, 2 most fatal diseases in India, this is the right time to search for an alternative to overcome the changed food habits of young India. Therefore, making changes in life - style along with alterations in the diet, play a key role in the management of obesity. We are proposing *Cicer arietinum* or Bengal Gram, which reduces the deranged Meda and Kapha dosha found in *Medoroga*. As low energy food with huge amount of fibers are effective in the treatment of Medoroga, Bengal Gram is an ideal food supplement, since it has a low glycemic index and is rich in dietary fibers. It also lowers the LDL & total cholesterol. Here, we have established that though Cicer arietinum is a rich source of proteins, more than 38% amino acids are vaayaviya and aakashiya in their

paanchabhautic constitution and are in possession of ruksha, laghu, vishad qualities. According to Acharya Hemadri, laghu and ruksha qualities are responsible for Langhana and Rukshana respectively causing weight loss. We have concluded that Bengal gram has a potential to work as a nutraceutical in the management of Sthaulya(Obesity).

Keywords- *Cicer arietinum* Neutraceutical, *Sthaulya*.

INTRODUCTION

Obesity is accumulation of excess fat in body which leads to negative effects on reduced life health. longevity or increased health problems. resulted in more than 30 million obese in India. It leads diabetes. ischemic heart to diseases. hypertension, stroke etc. Ayurvedic classics described obesity under headings of Atisthoulyam and Medoroga, The word Atisthoulya is a combination of 'Ati' and Sthoola . Ati means excessive and Sthoola means large. The meaning of Atisthoulya is to become excessively fat, leading to flabbiness of hips, abdomen and breast

[1]. The body metabolism is get decreased, the persons having these quality termed as Atisthoola (obese)The basic principles of treatment of *Sthouly*) described in as Avurveda Nidanaparivarjana, Apatarpanachikitsa and Samana and Shodhan chikitsa are used to treat obesity. We must to know pathya Apathya is important for proper management of disease and maintenance of health. In Ayuveda the management of obesity are aimed to pacify kapha dosha and medodhatu and vataanuloman are rich in dietary fiber and low glycemic index . Pathya is described as Ahara and Vihara, which causes pacification of the disease. [2] Ayurveda emphasizes that the successful treatment of any disease is not only depends upon the proper medication but proper diet and proper lifestyle is equally important. By following Ahara Vihara as described in Ayurveda one can prevent himself from Obesity and reduces its risks of various complications. Management of Guru and Apatarpana[4]

Nidana of *Sthaulya* : *sthaulya* causes may be of two types-

- 1. **Exogenious** *-medas* containing diet.
- 2. Endogenious dosha, dhatu, mala, strotas, etc.
- Acharya charka[5] has mentioned the nidana of sthaulya analytically. exogenious types .Charak has also defined bijadosh is another causes.
- Aharya sushrut [6] and vagbhat have made mention of the endogenous type..

In *ayurvedic* classics can be classified into 4 groups.

- 1. Aharaj nidan (dietary causes)
- 2. Viharaj nidan (life style factors)
- 3. *Manas nidan* (psychological factors)
- 4. Other causes-*Bijasvabhava* (genetic factor)

Pathogenesis of *Sthaulya*: - [6,7] manifestation of sthoulya, imbalance of few basic components of the body required are *dosha*, *dushua*, *strotas*, *agni*, *and ama*.

Dosha

- a. *Kapha* It is the main effective dosha in sthaulya, comes under the category of kaphaprakopa symptoms like alasya, gatrasad, , nidradhikya, angagurav etc. Due to extreme intake of guru, snigdha, shit, picchila guna madhur rasa ahar, and divaswap avyayam, achinta, vihara lead to vitiation of kapha. so kapha is the main cause of sthaulya and kapha prakriti persons are more prone to become *sthula*
- b. Pitta Mainly pachak pitta is involved in the pathogenesis of shaulya.
 symptoms like adhiksudha, atipipasa, svedadhikya, daurgandhya, have mentioned in pittavriddhi.
- c. *Vayu* the process of digesion, and proper circulation of *dhatus* like *medas* is controlled by saman *vayu* and *vyan vayu*. Improper circulation of fat in the body proves the involvement of *vyanvayu*.

Dushya:

Sushrutacharya has mentioned sthauly as dushya prevailing disease (Su. Su.24/9) and extreme and abnormal production of *medodhatu* is clearly seen in sthaulya, due to intake of guru, snigdha, shit, picchila guna madhuradi rasa as seen above dominant diet, increase accumulation of *medodhatu* (su. su. 15/38).

Strotas :

According to acharya charak specific nidan of medovahasrotasdushti, avyayam, diwaswapn, excessive intake of madhuradravya, varuni have been mentioned which, indicates involvement of medovahasrotas along with rasavahasrotas.

Agni

In the *sthaulya* formation of *ama* is more due to the diminish of *medodhatwagni* than *jatharagni* (su. Su. 15/38)

Sampraptighatak - Dosha

kapha	kledak kapha,	
Pitta	pachak pitta,	
Vayu	vyan vayu	

Dushya: Meda and Rasa,

Agni : Jatharagni and medodhatwagni

Strotas: Medovaha strotas, rasavaha stotasa

Udbhavsthan : Amashaya

Sthana : Sarvang particular in udara, stana, sphik and gala pradesha.

Pathogenesis of obesity: There are 3 main factors of obesity

- 1. Excessive lipid deposition
- 2. Diminished lipid metabolism
- 3. Diminished lipid utilization
- 1. Excessive lipid deposition : is due to Hypothalamic lesions, Adipose cell hyperplasia or hyperlipogenesis. Increased food intake in the form of carbohydrates, proteins and fats by metabolic process at end gets converted into fats.
- 2. Diminished lipid metabolism : is due to abnormality of autonomous innervations or decreased lypolytic hormones like adrenaline and thyroxin stimulate mobilization of unsaturated fatty acids from adipose tissue.
- 3. Diminished lipid utilization : in old age , imperfect of lipid oxidation and defective thermogenesis or inactivity.

In *Ayurveda* various food articles are mentioned *medohar*, *apatarpaneeya*, *karshaneeye* and *Lekhneeya* one of them *is Cicer arietinum* belongs to family fabaceae.

Literature review[8]

"चणको हरिमंथः स्यात्सकलप्रिय इत्यपि॥ चणकः शीतलो रुक्षः पित्तरक्तकफापहः। लघुः कषायो विष्टांम्भी वातलो ज्वरनाशनः॥" भा.प्र. Synonym: harimantha, chanaka. sakalpriya Hindi: Chane, chole Marathi:Harbara Gujrati: Chanya Bangali: Chola Telgu:Sangulu English: Bengal Gram, Chick pea **Taxonomic classification:** Kingdom: Plantae; **Division**: Magnoliophyta; Class: Magnoliopsida; **Order**: Fabales: Family: Fabaceae: **Subfamily**: Faboideae; Genus: Cicer: Species: Cicer arietinum(9-10). Part use: Leaves, seeds and seedpod(11,12,13).

CHEMICAL CONSTITUENTS

Phytochemical showing of Cicer arietinum seeds revealed the presence of carbohydrates, proteins, amino acids, fixed phytosterols, alkaloids, Phenolic oils, compounds and tannins, flavonoids, glycosides, saponins, amino acids, iron, phosphate, sulphate, and chloride [14-17]. It is excellent source of carbohydrates and proteins, which constitute about 80% of the total dry seed weight. The seeds were relatively rich in lecithin, potassium, phosphorus, calcium, folate and vitamin C, and also have small quantities of vitamins A and B. [9,18-19]. The amino acid composition (%) of seed proteins were: 7.2 glysine, 1.4 g methionine, 8.8 g arginine, 4.0 g glycine, 2.3 g histidine, 4.4 g isoleucine, 7.6 g leucine, 6.6 g phenylalanine, 3.3 g tyrosine, 3.5 g threonine, 4.6 g valine, 4.1 g alanine, 11.7 g aspartic acid, 16.0 g glutamic acid, 0.0 g hydroxyproline, 4.3 g proline, and 5.2 g serine [11,18,20]. Fatty acid like oleic

52.1, linoleic 38.0, myristic 2.74, pactic 5.11, and steatic 2. diphenyl-1-picrylhydrazyl (DPPH) radical scavengers followed by embryonic axe and cotyledon fractions. Hydrogen peroxide (H2O2) scavenging capacities of cotyledons and seed coats of chickpea were 12.3, 34.1 and 78.6% [21].

PHARMACOLOGICAL ACTIVITY Weight Loss / Obesity

Howarth NC at el stated that Intake of foods which are high in dietary fibre is associated with lower body mass index [BMI][22,23]. Eating of foods with rich in fibre content helps in reaching satiety faster and this satiating effect lasts longer since fibre rich foods require more time to chew and diges[24,25]. Consumption of low GI foods results in increase of cholecystokinin (a gastrointestinal peptide and hunger suppressant) and increased satisfaction [26-28]. Diets with low GI foods resulted in reduced insulin levels and higher weight loss compared to those with higher GI[29]. chana is a low GI food, it may helps to reduces weight. *Chana* supplementation in the diet prevented increased body weight and weight of epididymal adipose tissues in rats[30]. At the end of eight month experimental period the rats fed on high fat diet (HFD) weighed 654 g versus those fed with HFD plus chana (HFD+CP; 562 g) The epididymal fat pad weight to total body weight ratio was higher in rats fed on HFD (0.032 g/g) compared to those fed on HFD+CP (0.023 g/g; details of this experiment are explained under CVD)[30]. Therefore, chana being a low GI food can be an effective good choice in weight loss. Chana is reported to reduced fat accretion in obese person. It is getting better fat metabolism and can be helpful in

correcting obesity and related disorders[30]. *chana* supplementation in the diet resulted in increased satiation and fullness[31].

Antioxidant effects: Tom В and Thiruselyi M reported that the free radicals scavenging, antioxidant properties and intestinal α-glucosidase inhibitory activity of methanol extract of two varieties of Cicer arietinum were evaluated. Compared with raw seeds raise in total flavonoids and polyphenol concentration in green gram sprouts and Kabuli Chana sprouts (KCs) were recorded. Total protein concentrations in sprouts same as non-sprouted grains. 2,2'- Azinobis (3-ethyl benzthiazoline-6sulphonic acid) cation scavenging activity was more than twice in chana sprouts of (BGs) and KtCs than their raw seeds.DPPH scavenging, nitro blue tetrazolium dropping and glucose induced Hb glycation inhibitory activity non-sprouted raw grains. same as enhance in rat intestinal α -glucosidase inhibitory activity was observed in Bengal gram and kaboli chana. Bengal gram significantly mitigated first 30 min starch-induced postprandial glycemic excursions and reduced 2 hr postprandial glycemic load[32]. The extent of free radical scavenging properties and antioxidant effects of crude extracts of sprouted Cicer arietinum seeds were evaluated. main varieties of Cicer arietinum chana and Kabuli Chana are examined and compared for their free radical scavenging properties and antioxidant effects. Free radical scavenging properties are evaluat against stable hydrogen peroxide and DPPH radical. The results observe that the two varieties Cicer arietinum out of these Brown colored Cicer arietinum sprouts

showed the greatest activity against DPPH radicals, hydrogen peroxide radicals and lipid peroxide compared to the cream variety[33].

Antidiabetic effect: Madhumeha and hrudroga are the most common complication sthaulya. PullaihT and Naidu KC has reported that the seeds reduced postprandial plasma glucose and were useful in the treatment of diabetes[34-35]. *Cicer arietinum* in petroleum ether extract of shows anti-hyperglycaemic activity, seeds at three different doses i.e. first is 100 second 200 and third 400 mg per kg in alloxan (70 mg/kg iv) induced diabetic rats. In both acute and subacute studies serum glucose level (SGL) was measured. The change in body weight was noted during subacute study. Oral glucose tolerance test (OGTT) was performed in both diabetic and non-diabetic mice previously loaded with (2.5 g/kg po) glucose. Glyburide (10 mg/kg) was used as a standard drug. The maximum reduction in SGL was observed in PEECA (400 mg/kg) group at 6h (137.17 mg/dl) in acute study and on 21st day (217.79 mg/dl) in subacute study respectively. In glyburide treated mice the maximum reduction in SGL was observed at 6h (194.97 mg/dl) and on 21st day (267.40mg/dl) respectively. Petroleum ether extract of chana (400 mg/kg) and glyburide (10 mg/kg) nullify loss of body weight in diabetic mice. OGTT rises glucose threshold in diabetic and nondiabetic mice. Accordingly, PEECA showed antihyperglycaemic activity comparable with glyburide[36].

Hypocholesterolaemic effect: Yust Mdel M et al stated that the hypocholesterolaemic and antioxidant activities of chickpea protein were studied. All hydrolysates tested exhibited better hypocholesterolaemic activity when compared with chana protein isolate. The maximum cholesterol micellar solubility inhibition (50%) had seen after 60 min of treatment with alcalase after that 30 min of hydrolysis with flavourzyme. To test antioxidant activity of chana proteins three methods were used: β-carotene bleaching method, reducing power and DPPH radical-scavenging effect. Chana hydrolysates showed better antioxidant activity in all assays, especially reducing power and DPPH scavenging effect than chickpea protein isolate[37].

Discussion

From the pathophysiology of *Sthaulya*, it can be clearly noticed that obesity is caused by several factors; it results from a common pathological mechanism. *Chana* causes *rukshta* (dryness) *laghavta* in the body because of its *ruksha* and *laghu guna*, and predominance of *kashsya rasa*, it break the *samprapti* of *sthaulya* (obesity). It is high in fibre and helps to lower cholesterol. It also has a very low glycemic index, high fiber which is important for Obesity patients.

Panchabhautika	Kashaya	Laghu	Ruksha
constitution	rasa	guna	guna
Prithvi	+	-	-
Aapa	-	-	-
Tej	-	+	+
Vayu	+	+	+
Akash	-	+	-

According to Ayurveda, Chana posses Kashaya rasa with predominance of Prithvi and Vaayu mahabhutas it also shows laghu and ruksha guna. Acharya Hemadri said that Langhane Laghu and

Shoshane ruksha that means the both gunas shows the Medo- Kapha shamaka karma.

Chana has rich source of protein in legumes and hence it help fuel the body methionine a type of amino acid present in it is beneficial for proper functioning of the cells and muscles and also protein helpful in obesity. Protein is the single most essential nutrient for weight loss and better looking body, high protein boosts metabolism, intake reduces appetite and changes several weight regulating hormones. Proteins are made up of chain of amino acid. A complete protein contains all essential amino acid, one cup of Bengal gram contains 38.6 grams of proteins.

Essential amino	Amount	RDI%
acid		
Histidine	1.062	152%
	gm	
Isoleucine	1.062	118%
	gm	
Leucine	2.748	101%
	gm	
Lysine	2.582	123%
	gm	
Methionine	0.506	-
	gm	
Phenylalanine	2.068	-
	gm	
Threonine	1.432	136%
	gm	
Tryptophan	0.37 gm	132%
Valine	1.618	89%
	gm	

Above table shows the balance of essential amino acids in 200gm i.e. One cup of *chana*. Out of 9 amino acid

isoleucine. leucine. methionine, phenylalanine, valine have possesses vaayu and aakash mahabhutas both laghu and ruksha gunas also shows vishad guna. Aakash vaayu mahabhutas are hydrophobic action that means *medo* and kapha nashana karma, which decreased fats or meda of body, chana have high fiber content and thus have high volume along with high nutrient density. Intake of foods rich in dietary fiber often lead to lower body mass index as dietary fibers function as bulking agents in digestive system. These compounds increase satiety (a feeling of fullness) and reduce appetites making people feel fuller for longer and thereby reducing overall calorie intake.

Conclusion

Excessive accumulation of *kapha* and *meda* with other factors eventually leads to *Sthoulya roga*, so specific diet management should be followed to conflict *Sthoulya roga*. The weight loss expected to be gradual and long-lasting.

Chana have high fiber content with high nutrient density. Chana is considered as low food GI which increase cholecystokinin (hunger suppressant) thus help in obesity reduction and weight loss. Chana is a medicinal plant used as a medicine to treat traditionally a wide range of health complications. The analysis of phytochemistry, proteins, amino acids and other minerals present in chickpea are proved beneficial for treating many health disorders and thus high significant value have in therapeutical and pharmacological uses.

Reference-

E- ISSN: 2456-4435

- Agnivesha, Charak, Dridhabala, Charaka Samhita Sutrasthana, Edited by Hari Shankar Shastri Chapter 21/4, 9th Edition, Chaukhamba Orientalia, Varanasi, 2002, p.224
- 2. Agnivesha, Charaka, Chakrapani, Sharma RK, Dash B (editors),Charaka Samhita with Chakrapaanidatta edition. Ayurved Dipika Commentary, Sutrasthana, Chapter25/5. Reprint ed. Chowkambha Sanskrit Series, Varanasi ,Volume 1,2012, p.437
- Charak Samhita, Agnivesh, Brahmanand Triphati, Sutrasthan Chapter 21/20 Edition 1 Chowkambha Surbharti Prakashan, Varanasi, Volume 1, 2016, p.405
- 4. Charak samhita , edited and translated by Shri satya narayan shasri, 1st ed., Chaukambha Bharati academy, Varanasi,2012.
- Sushrut samhita, edited by dr. Anant ram Sharma, 1st ed., Chaukambha Vidya bhavan., Varanasi 2006.
- Kayachikitsa , text book of dr. Ajay kumar Sharma, 1st ed., Chaukambha publication., Varanasi 2006.
- Prof. K. C. Chunekar bhavprakash nighantu , Chaukhanbha Bharati Academy, Varanasi reprint 2018.P-622.
- Abd Aziz A. Development of a biosensor based on amine oxidase rom *Cicer arietinum* for the detection of biogenic amines. Bioprocess Engineering Department, Faculty of Chemical and Natural Resources

Engineering, Universiti Teknologi Malaysia 2007.

- 9. USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network-(GRIN).National Germplasm Resources Laboratory, Beltsville, Maryland. URL: http://www.arsgrin.gov.4/ cgibin/npgs/html/taxon.pl?10535 (16 June 2015)
- 10. Duke JA. Handbook of legumes of world economic importance. Plenum Press, New York 1981: 52-57.
- 11. Doppalapudi S, Sandya L, Reddy K C, Nagarjuna S, Padmanabha R Y and Saba S. Anti- inflammatory activity of *Cicer arietinum* seed extracts. Asian Journal of Pharmaceutical & Clinical Research 2012;5:64-68.
- 12. Liu YM, Yikemu S. Wei Wu Er Yao Zhi. 1st ed. Urumqi (Xinjiang): People's Publishing House 1986:469-471.
- Singh K, Ahlawat S and Patra A. Pharmacognostical evaluation of *Cicer arietinum* Linn. Phcog Net 2013; 1(3): 195-200.
- 14. Arora M , Singh S and Kaur P. Pharmacognostic & phytochemical evaluation Of selected seeds of 'Cicer arietinum' Linn. seeds from oopnagar Punab. International Journal of Pharmaceutical Science Invention 2013; 2(11):18-29.
- 15. Dalal K, Singhroha S, Ahlawat S and Patra A. Antidiarrhoeal activity of roots of *Cicer arietinum* Linn. International Journal of Research in Pharmaceutical and Biomedical Sciences 2011; 2(1): 268-270.

E- ISSN: 2456-4435

- 16. Ramachandra MS, Rao AS and Rani SS. Hepatoprotective and antioxidant activities of areal parts (except fruits) of *Cicer arietinum* against carbon tetrachloride induced hepatotoxicity in rats. Int J Pharm 2014; 4(1): 431-436.
- 17. Huisman J and Van der Poel AFB. Aspects of the nutritional quality and use of cool season food legumes in animal feed.1994: 53-76. In: FJ Muehlbauer and WJ Kaiser (eds.) Expanding the production and use of cool season food legumes. Kluwer Academic Publishers. Dordrecht, The Netherlands 1994.
- Hulse JH. Nature, composition and utilization of grain legumes. 1991: 1127. In: Uses of tropical Legumes: Proceedings of a Consultants' Meeting, 27-30 March 1989, ICRISAT Center. ICRISAT, Patancheru, A.P. 502 324, India 1991.
- PC. 19. Williams Bhatty RS. Deshpande SS, Hussein LA and Savage GP. Improving nutritional cool season food quality of legumes. 1984:113-129. In: FJ Muehlbauer and WJ Kaiser (eds.), Expanding the production and use of cool season food legumes. Kluwer Academic Publishers, Dordrecht, The Netherlands.
- 20. Sreerama YN, Sashikala VB, Pratape VM. Variability in the distribution of phenolic compounds in milled fractions of chickpea and horse gram: evaluation of their antioxidant properties. J Agric Food Chem 2010; 58(14): 8322-8330.

- 21. Howarth NC, Saltzman E & Roberts SB (2001) Dietary fibre and weight regulation. *Nutr Reviews* 59, 129-139.
- 22. Pereira MA & Ludwig DS (2001) Dietary fibre and body-weight regulation. Observations and mechanisms. *Pediatric Clinics of North America* 48, 969–80.
- 23. Marlett JA, McBurney MI & Slavin JL (2002) Position of the American Dietetic Association: health implications of dietary fibre. *J Am Diet Assoc* **102**, 993-1000.
- 24. Burley VJ, Paul AW & Blundell JE (1993) Influence of a high-fibre food (myco-protein) on appetite: effects on satiation (within meals) and satiety (following meals). *Eur J Clin Nutr* **47**, 409-418.
- 25. Swinburn BA, Caterson I, Seidell JC, *et al.* (2004) Diet, nutrition and the prevention of excess weight gain and obesity. *Public Health Nutr* **7**, 123-146.
- 26. Brand-Miller J, Holt SHA, Pawlak DB, *et al.* (2002) Glycemic index and obesity. *Am J Clin Nut* **76**, 281S-285S.
- 27. Holt S, Brand J, Soveny C, *et al.* (1992) Relationship of satiety to postprandial glycemic, insulin and cholecystokinin responses. *Appetite* 18, 129-41.
- 28. Slabber M, Barnard HC, Kuyl JM, et al. (1994) Effects of a lowinsulin-response, energy-restricted diet on weight loss and plasma insulin concentrations in hyperinsulinemic obese females. Am J Clin Nutr 60, 48-53.
- 29. Yang Y, Zhou L, Gu Y, *et al.* (2007) Dietary chickpea reverse visceral adiposity, dyslipidaemia

E- ISSN: 2456-4435

and insulin resistance in rats induced by a chronic high-fat diet. *Br J Nutr* **98**, 720-726.

- 30. Murty CM, Pittaway JK & Ball MJ (2010) Chickpea supplementation in an Australian diet affects food choice, satiety and bowel function. *Appetite* 54, 282-288.
- 31. AK, Sahana C, Zehra A, Madhusudana K, Kumar DA and Agawane SB. Mitigation of starchinduced postprandial glycemic spikes in rats by antioxidants-rich extract of *Cicer arietinum* Linn. seeds and sprouts. J Pharm Bioallied Sci 2013; 5(4):270-276.
- 32. Tom and Thiruselyi В M. Comparison of free radical scavenging activity of two main varieties of Cicer arietinum sprouts. Int Res J Pharm 2013; 4(6): 168-170.
- 33. The Wealth of India, A Dictionary of Indian Raw Materials and

Industrial Products, Publication and Information Directorate, CSIR. New Delhi 2003:Ca-Ci,549-555.

- 34. Pullaih T and Naidu KC. Antidiabetic plants in India and herbal based antidiabetic research. regency publication. New Delhi 2003: 136-137.
- 35. Yadav BV, Deshmukh TA, Badole SL, Kadam HM, Bodhankar SL and Dhaneshwar SR. Antihyperglycemic activity of *Cicer arietinum* seeds. Pharmacologyonline 2009; 3: 748-757.
- 36. Yust Mdel M, Millán-Linares Mdel C, Alcaide-Hidalgo JM, Millán F and Pedroche J. Hypocholesterolaemic and antioxidant activities of chickpea (*Cicer arietinum* L.) protein hydrolysates. J Sci Food Agric 2012; 92(9):1994-2001.

Cite this article:

Role of Cicer arietinum (Bengal gram) as a Neutraceutical in Sthaulya Bharti Sadabal, D. V. Kulkarni, T. A. Pansare

Ayurline: International Journal of Research In Indian Medicine 2020; 4 (2): 01-10